Practical Applications for Language Models

Dietrich Klakow
Spoken Language Systems
Saarland University
Overview

• Vocabularies for morphologically rich languages

• Selecting task specific sub-corpus

• LM adaptation using tiny adaptation corpus
Inventing new Words
Vocabularies for morphologically rich languages
Tamil

Training corpus: 103651 tokens

Test corpus: 94664 tokens

Vocabulary size: 16209 (=types in training corpus)

Most frequent words: உஹ் (oh!), உம்ம் (hmmm), சரி (okay), என்ன (what?), நான் (I), அது (that), நீ (you)

Problem: 13% OOV rate

Frequent OOVs: லவ் (love), அள்ளி (a month), சரிணா (okay?), குணா (name), நான் பாற்றுக (what), வாட்டு (rent)
Idea:

• Decompose words into smaller units
• Train language model on the smaller units
• Sample from it
• Create extended vocabulary from artificial corpus
Decompose words

- Used morfessor on flat vocabulary

<s>அக்கா க்கா</s>
<s>அக்கா க்கு</s>
<s>அக்கா டா</s>
<s>அக்கா ளா</s>

...

Frequent units:

ன் 592
ம் 491
நு 419
ந றா 409
நாக் 370
மா 366
லா 356
க்கு 355
நா 336
Language Modeling and Sampling

• Train trigram LM from fragments
• Sample from the LM
Language Modeling and Sampling

- Train trigram LM from fragments
- Sample from the LM
- Examples:

 உம்புதைக்குத் “went” உலக் “tax”
 போச்சு “big”
 பொருட்டு “give”
 பெருங்கள் garbage
 மருந்து garbage
 பற்றி “not there?”
 பெளம்பு “go away”
Language Modeling and Sampling

- Train trigram LM from fragments
- Sample from the LM
Next steps

• Use different language models

• Try other languages

• Use methods from Jilles for segmentation
Selecting Documents from a Background Corpus
The Task

Background Corpus (e.g. North American News Text)

Target Corpus (e.g. topic Jackie Kennedy)

Test Corpus (e.g. topic Jackie Kennedy)
Approach

Measure change in likelihood when document is omitted from training corpus:

\[
\Delta F_i = \sum_{w} N_{\text{Target}} (w) \log \frac{P(w)}{P_{D_i}(w)}
\]

\(N_{\text{Target}}(w)\): Unigram counts on target corpus

\(P(w)\): Unigram LM on complete training corpus

\(P_{D_i}(w)\): Unigram LM on complete training corpus when \(i\)-th document is omitted
Removing documents reduces OOV rate
Unigram Perplexities

Selection from background better than target corpus
Bi- and Trigram Perplexities

Selection helps bigrams and trigrams
Summary

Mercer's famous comment: “There is no data like more data”

Sometimes having the right data is important
Language Model Adaptation for Tiny Adaptation Corpora
Task

• Adapt a language model using as little adaptation data as possible (e.g. 10 utterances)

• Example:

 1. A: okay
 2. B: hi
 3. A: hi
 4. B: um yeah i would like to talk about how you dress for work and and um
 5. A: well i work in uh corporate control so we have to dress kind of nice
 6. B: uh-huh
 7. A: and in the summer just dresses we can't even well we're not even
 8. B: and is
 9. A: it really doesn't vary that much from season to season since the office is
 10. B: right right is there is there um a- is there a like a code of dress
Task

Adaptation Corpus (Switchboard) (10…100000 utterances)

Background BG Corpus (News Text) (300 mio. words.)

Language Model Adaptation

Adapted Language Model
Test data: Switchboard 1998 HUB-5
Overview of the System

Adaptation Corpus (Switchboard) -> Background BG Corpus (News Text) -> Automatic document selection from BG Corpus

Filtered BG Corpus

Fill-Up based Unigram -> BG Word Trigram

BG Class Trigram

Adjusted FMA

Adapted Class Model

Linear Interpolation

Adapted Language Model
Overview of the System

Adaptation Corpus (Switchboard)

Background BG Corpus (News Text)

Automatic document selection from BG Corpus

Filtered BG Corpus

Fill-Up based Unigram

BG Word Trigram

BG Class Trigram

Adjusted FMA

Adapted Class Model

Linear Interpolation

Adapted Language Model
Estimating good adapted Unigrams

• Using Fill-Up

\[P_{\text{adap}}(w) = \begin{cases}
\frac{N_{\text{Adap}}(w) - d}{N_{\text{Adap}}} + \alpha P_{BG}(w) & \text{if } N_{\text{Adap}}(w) > 0 \\
\alpha P_{BG}(w) & \text{else}
\end{cases} \]

Besling at al. 1995

• Make discounting parameter depend continuously on count

\[d(N) = \frac{d_0 + s(N - 1)}{1 + g(N - 1)} \]

d_0, s and g are parameters tuned of development set
Effect of Count Continuous Discounting on Fill-Up

Improves unigrams in particular for very small adaptation corpora

$PP_{BG} = 1830$
Adjusted FMA

FMA:

\[P(w \mid h) = \frac{1}{Z(h)} \left(\frac{P_{Adap}(w)}{P_{BG}(w)} \right)^\beta P_{BG}(w \mid h) \]

Kneser et al. 1997

Adjusted FMA

\[P(w \mid h) = \frac{1}{Z(h)} \left(\frac{P_{BG}(w \mid h)}{P_{BG}(w)} \right)^\beta P_{Adap}(w) \]
Compare Standard and Adjusted FMA

Additional consistent improvement
Adaptation of Class Models

Normal Class Model

\[P(w \mid h) = P(w \mid c)P(c \mid C(h)) \]

Emission model Class prediction

Idea: *adapt the emission model*

Adapted Class Model

\[P_{Adap}(w \mid h) = P_{Adap}(w \mid c)P_{BG}(c \mid C(h)) \]
Results for Adapted Class Model

Always a reduction of perplexity by a factor of two!
Overview of the System

- Adaptation Corpus (Switchboard)
- Background BG Corpus (News Text)
- Filtered BG Corpus
- Automatic document selection from BG Corpus
- Fill-Up based Unigram
- BG Word Trigram
- BG Class Trigram
- Adjusted FMA
- Adapted Class Model
- Linear Interpolation
- Adapted Language Model
Comparison on Trigram Models

![Graph showing the comparison of perplexity with increasing number of adaptation utterances for trigram models. The graph indicates a decrease in perplexity as the number of adaptation utterances increases.]
Comparison on Trigram Models

![Graph showing the comparison of Trigram models on adaptation data only and BG Word Trigram. The vertical axis represents perplexity, ranging from 0 to 1400, and the horizontal axis represents the number of adaptation utterances, ranging from 10 to 10000. The graph illustrates a decrease in perplexity as the number of adaptation utterances increases.]
Comparison on Trigram Models

Adaptation of word model
Comparison on Trigram Models

![Graph showing the comparison of different trigram models](image-url)
Comparison on Trigram Models

Adaptation of class model
Comparison on Trigram Models

Combination; 30\%-80\% improvement
Summary

• Demonstrated improvements on
 • Fill-up
 • FMA
• Suggest adaptation of class LMs
• Combination of method makes LM adaptation to tiny corpora feasible
Overall Summary

- “Inventing” new words
- Selecting documents to decrease mismatch between background corpus and target domain
- Adapting LMs using only 10 domain specific utterances